Dingu'yddie
This commit is contained in:
parent
2a412ddb13
commit
fcaa08a89a
173
labo01/Math3D.h
173
labo01/Math3D.h
|
@ -26,85 +26,114 @@
|
|||
|
||||
namespace gti320 {
|
||||
|
||||
// Deux types de vecteurs 3D considérés ici
|
||||
typedef Vector<double, 3> Vector3d;
|
||||
typedef Vector<float, 3> Vector3f;
|
||||
// Deux types de vecteurs 3D considérés ici
|
||||
typedef Vector<double, 3> Vector3d;
|
||||
typedef Vector<float, 3> Vector3f;
|
||||
|
||||
// Dans le cadre de ce projet, nous considérons seulement deux
|
||||
// cas :
|
||||
//
|
||||
// - les rotations
|
||||
// - les translations
|
||||
//
|
||||
// Deux types de matrices en coordonnées homogèes :
|
||||
typedef Matrix<double, 4, 4, ColumnStorage> Matrix4d;
|
||||
typedef Matrix<float, 4, 4, ColumnStorage> Matrix4f;
|
||||
//
|
||||
// Deux types de matrices pour les rotations
|
||||
typedef Matrix<double, 3, 3, ColumnStorage> Matrix3d;
|
||||
typedef Matrix<float, 3, 3, ColumnStorage> Matrix3f;
|
||||
// Dans le cadre de ce projet, nous considérons seulement deux
|
||||
// cas :
|
||||
//
|
||||
// - les rotations
|
||||
// - les translations
|
||||
//
|
||||
// Deux types de matrices en coordonnées homogèes :
|
||||
typedef Matrix<double, 4, 4, ColumnStorage> Matrix4d;
|
||||
typedef Matrix<float, 4, 4, ColumnStorage> Matrix4f;
|
||||
//
|
||||
// Deux types de matrices pour les rotations
|
||||
typedef Matrix<double, 3, 3, ColumnStorage> Matrix3d;
|
||||
typedef Matrix<float, 3, 3, ColumnStorage> Matrix3f;
|
||||
|
||||
/**
|
||||
* Initialise et retourne la matrice identité
|
||||
*/
|
||||
template<>
|
||||
inline void Matrix4d::setIdentity()
|
||||
{
|
||||
// TODO affecter la valeur 0.0 partout, sauf sur la diagonale principale où c'est 1.0.
|
||||
// Note: ceci est une redéfinition d'une fonction membre!
|
||||
}
|
||||
/**
|
||||
* Initialise et retourne la matrice identité
|
||||
*/
|
||||
template<>
|
||||
inline void Matrix4d::setIdentity() {
|
||||
this->setZero();
|
||||
|
||||
/**
|
||||
* Calcul de la matrice inverse, SPÉCIALISÉ pour le cas d'une matrice de
|
||||
* transformation en coordonnées homogènes.
|
||||
*
|
||||
* TODO (vous pouvez supposer qu'il s'agit d'une matrice de transformation
|
||||
* en coordonnées homogènes)
|
||||
*/
|
||||
template<>
|
||||
inline Matrix4d Matrix4d::inverse() const
|
||||
{
|
||||
// TODO : implémenter
|
||||
return Matrix4d(); // Pas bon, à changer
|
||||
}
|
||||
for (int i = 0; i < 4; i++) {
|
||||
(*this)(i, i) = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Calcul de la matrice inverse, SPÉCIALISÉ pour le cas d'une matrice de rotation.
|
||||
*
|
||||
* (vous pouvez supposer qu'il s'agit d'une matrice de rotation)
|
||||
*/
|
||||
template<>
|
||||
inline Matrix3d Matrix3d::inverse() const
|
||||
{
|
||||
// TODO : implémenter
|
||||
return Matrix3d();
|
||||
}
|
||||
/**
|
||||
* Calcul de la matrice inverse, SPÉCIALISÉ pour le cas d'une matrice de
|
||||
* transformation en coordonnées homogènes.
|
||||
*/
|
||||
template<>
|
||||
inline Matrix4d Matrix4d::inverse() const {
|
||||
auto transposed_rotation = this->block(0, 0, 3, 3).transpose<double, 3, 3, ColumnStorage>();
|
||||
auto translation = Vector<double, 3>();
|
||||
for (int i = 0; i < 3; i++) {
|
||||
translation(i) = (*this)(i, 3);
|
||||
}
|
||||
|
||||
auto result = Matrix4d();
|
||||
result(3, 3) = 1;
|
||||
|
||||
// Applique la matrice de rotation
|
||||
result.block(0, 0, 3, 3) = transposed_rotation;
|
||||
|
||||
// Applique le vecteur de translation
|
||||
auto inverted_translation = (-1.0 * transposed_rotation) * translation;
|
||||
auto trans_block = result.block(0, 3, 3, 1);
|
||||
trans_block(0, 0) = inverted_translation(0);
|
||||
trans_block(1, 0) = inverted_translation(1);
|
||||
trans_block(2, 0) = inverted_translation(2);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calcul de la matrice inverse, SPÉCIALISÉ pour le cas d'une matrice de rotation.
|
||||
*
|
||||
* (vous pouvez supposer qu'il s'agit d'une matrice de rotation)
|
||||
*/
|
||||
template<>
|
||||
inline Matrix3d Matrix3d::inverse() const {
|
||||
return this->transpose<double, 3, 3, ColumnStorage>();
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiplication d'une matrice 4x4 avec un vecteur 3D où la matrice
|
||||
* représente une transformation en coordonnées homogène.
|
||||
*/
|
||||
template<typename _Scalar>
|
||||
Vector<_Scalar, 3> operator*(const Matrix<_Scalar, 4, 4, ColumnStorage> &A, const Vector<_Scalar, 3> &v) {
|
||||
auto homogeneous = Vector<_Scalar, 4>(v);
|
||||
homogeneous(3) = 1;
|
||||
Vector<_Scalar, 4> transformed = A * homogeneous;
|
||||
return Vector<_Scalar, 3>(transformed);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Multiplication d'une matrice 4x4 avec un vecteur 3D où la matrice
|
||||
* représente une transformation en coordonnées homogène.
|
||||
*/
|
||||
template <typename _Scalar>
|
||||
Vector<_Scalar, 3> operator*(const Matrix<_Scalar, 4, 4, ColumnStorage>& A, const Vector<_Scalar, 3>& v)
|
||||
{
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, 3>(); // pas bon, à changer
|
||||
}
|
||||
/**
|
||||
* Initialise et retourne la matrice de rotation définie par les angles
|
||||
* d'Euler XYZ exprimés en radians.
|
||||
*
|
||||
* La matrice doit correspondre au produit : Rz*Ry*Rx.
|
||||
*/
|
||||
template<typename _Scalar>
|
||||
static Matrix<_Scalar, 3, 3> makeRotation(_Scalar x, _Scalar y, _Scalar z) {
|
||||
double sin_theta = std::sin(x);
|
||||
double cos_theta = std::cos(x);
|
||||
double sin_phi = std::sin(y);
|
||||
double cos_phi = std::cos(y);
|
||||
double sin_psi = std::sin(z);
|
||||
double cos_psi = std::cos(z);
|
||||
|
||||
auto m = Matrix<_Scalar, 3, 3>();
|
||||
m(0, 0) = cos_phi * cos_psi;
|
||||
m(1, 0) = cos_phi * sin_psi;
|
||||
m(2, 0) = -sin_phi;
|
||||
m(0, 1) = sin_theta * sin_phi * cos_psi - cos_theta * sin_psi;
|
||||
m(1, 1) = sin_theta * sin_phi * sin_psi + cos_theta * cos_psi;
|
||||
m(2, 1) = sin_theta * cos_phi;
|
||||
m(0, 2) = cos_theta * sin_phi * cos_psi + sin_theta * sin_psi;
|
||||
m(1, 2) = cos_theta * sin_phi * sin_psi - sin_theta * cos_psi;
|
||||
m(2, 2) = cos_theta * cos_phi;
|
||||
|
||||
/**
|
||||
* Initialise et retourne la matrice de rotation définie par les angles
|
||||
* d'Euler XYZ exprimés en radians.
|
||||
*
|
||||
* La matrice doit correspondre au produit : Rz*Ry*Rx.
|
||||
*/
|
||||
template<typename _Scalar>
|
||||
static Matrix<_Scalar, 3, 3> makeRotation(_Scalar x, _Scalar y, _Scalar z)
|
||||
{
|
||||
// TODO : implémenter
|
||||
|
||||
return Matrix<_Scalar, 3, 3>(); // pas bon, à changer
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -12,6 +12,7 @@
|
|||
*/
|
||||
|
||||
#include <complex>
|
||||
#include <iostream>
|
||||
#include "MatrixBase.h"
|
||||
|
||||
namespace gti320 {
|
||||
|
|
|
@ -37,9 +37,12 @@ namespace gti320
|
|||
/**
|
||||
* Constructeur de copie
|
||||
*/
|
||||
MatrixBase(const MatrixBase& other) : m_storage(other.m_storage) { }
|
||||
MatrixBase(const MatrixBase& other) : m_storage(other.m_storage) {
|
||||
}
|
||||
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage() { }
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage() {
|
||||
setZero();
|
||||
}
|
||||
|
||||
/**
|
||||
* Destructeur
|
||||
|
@ -119,7 +122,9 @@ namespace gti320
|
|||
*/
|
||||
MatrixBase() : m_storage(), m_rows(0) { }
|
||||
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _Cols), m_rows(_rows) { }
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _Cols), m_rows(_rows) {
|
||||
setZero();
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructeur de copie
|
||||
|
@ -205,7 +210,9 @@ namespace gti320
|
|||
*/
|
||||
MatrixBase() : m_storage() { }
|
||||
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _cols), m_cols(_cols) { }
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _cols), m_cols(_cols) {
|
||||
setZero();
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructeur de copie
|
||||
|
@ -291,7 +298,9 @@ namespace gti320
|
|||
*/
|
||||
MatrixBase() : m_storage(), m_rows(0), m_cols(0) { }
|
||||
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _cols), m_rows(_rows), m_cols(_cols) { }
|
||||
explicit MatrixBase(int _rows, int _cols) : m_storage(_rows* _cols), m_rows(_rows), m_cols(_cols) {
|
||||
setZero();
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructeur de copie
|
||||
|
|
|
@ -127,7 +127,7 @@ namespace gti320 {
|
|||
|
||||
for (int col = 0; col < A.cols(); col++) {
|
||||
for (int row = 0; row < A.rows(); row++) {
|
||||
result(col, row) = A(col, row) + B(col, row);
|
||||
result(row, col) = A(row, col) + B(row, col);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -206,8 +206,21 @@ namespace gti320 {
|
|||
template<typename _Scalar, int _Rows, int _Cols>
|
||||
Vector<_Scalar, _Rows>
|
||||
operator*(const Matrix<_Scalar, _Rows, _Cols, RowStorage> &A, const Vector<_Scalar, _Cols> &v) {
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, _Rows>();
|
||||
assert(A.cols() == v.size());
|
||||
|
||||
auto result = Vector<_Scalar, _Rows>(A.rows());
|
||||
|
||||
for (int row = 0; row < A.rows(); row++) {
|
||||
_Scalar dotP = 0;
|
||||
|
||||
for (int col = 0; col < A.cols(); col++) {
|
||||
dotP += A(col, row) * v(col);
|
||||
}
|
||||
|
||||
result(row) = dotP;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -219,8 +232,19 @@ namespace gti320 {
|
|||
template<typename _Scalar, int _Rows, int _Cols>
|
||||
Vector<_Scalar, _Rows>
|
||||
operator*(const Matrix<_Scalar, _Rows, _Cols, ColumnStorage> &A, const Vector<_Scalar, _Cols> &v) {
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, _Rows>();
|
||||
assert(A.cols() == v.size());
|
||||
|
||||
auto result = Vector<_Scalar, _Rows>(A.rows());
|
||||
|
||||
for (int col = 0; col < A.cols(); col++) {
|
||||
_Scalar v_col = v(col);
|
||||
|
||||
for (int row = 0; row < A.rows(); row++) {
|
||||
result(row) += A(row, col) * v_col;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -228,8 +252,13 @@ namespace gti320 {
|
|||
*/
|
||||
template<typename _Scalar, int _Rows>
|
||||
Vector<_Scalar, _Rows> operator*(const _Scalar &a, const Vector<_Scalar, _Rows> &v) {
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, _Rows>();
|
||||
auto result = Vector<_Scalar, _Rows>(v.rows());
|
||||
|
||||
for (int row = 0; row < v.rows(); row++) {
|
||||
result(row) = a * v(row);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
@ -238,8 +267,15 @@ namespace gti320 {
|
|||
*/
|
||||
template<typename _Scalar, int _RowsA, int _RowsB>
|
||||
Vector<_Scalar, _RowsA> operator+(const Vector<_Scalar, _RowsA> &a, const Vector<_Scalar, _RowsB> &b) {
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, _RowsA>();
|
||||
assert(a.rows() == b.rows());
|
||||
|
||||
auto result = Vector<_Scalar, _RowsA>(a.rows());
|
||||
|
||||
for (int row = 0; row < a.rows(); row++) {
|
||||
result(row) = a(row) + b(row);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -247,7 +283,82 @@ namespace gti320 {
|
|||
*/
|
||||
template<typename _Scalar, int _RowsA, int _RowsB>
|
||||
Vector<_Scalar, _RowsA> operator-(const Vector<_Scalar, _RowsA> &a, const Vector<_Scalar, _RowsB> &b) {
|
||||
// TODO : implémenter
|
||||
return Vector<_Scalar, _RowsA>();
|
||||
assert(a.rows() == b.rows());
|
||||
|
||||
auto result = Vector<_Scalar, _RowsA>(a.rows());
|
||||
|
||||
for (int row = 0; row < a.rows(); row++) {
|
||||
result(row) = a(row) - b(row);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols>
|
||||
void print_matrix(const Matrix<_Scalar, _Rows, _Cols> &m) {
|
||||
std::cout << "+----" << '\n';
|
||||
std::cout.precision(2);
|
||||
for (int row = 0; row < m.rows(); row++) {
|
||||
for (int col = 0; col < m.cols(); col++) {
|
||||
std::cout << m(row, col) << "," << "\t";
|
||||
}
|
||||
std::cout << "\n";
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _Scalar>
|
||||
_Scalar det(const Matrix<_Scalar, 1, 1> &m) {
|
||||
return m(0, 0);
|
||||
}
|
||||
|
||||
template<typename _Scalar>
|
||||
_Scalar det(const Matrix<_Scalar, 2, 2> &m) {
|
||||
_Scalar a = m(0, 0);
|
||||
_Scalar b = m(0, 1);
|
||||
_Scalar c = m(1, 0);
|
||||
_Scalar d = m(1, 1);
|
||||
|
||||
return (a * d) - (b * c);
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols>
|
||||
double det(const Matrix<_Scalar, _Rows, _Cols> &m) {
|
||||
assert(m.rows() == m.cols());
|
||||
|
||||
auto l = Matrix<double, _Rows, _Cols>();
|
||||
auto u = Matrix<double, _Rows, _Cols>();
|
||||
|
||||
for (int j = 0; j < m.cols(); j++) {
|
||||
for (int i = 0; i < m.rows(); i++) {
|
||||
u(i, j) = m(i, j);
|
||||
l(i, j) = m(i, j);
|
||||
|
||||
for (int k = 0; k < i; k++) {
|
||||
u(i, j) -= l(i, k) * u(k, j);
|
||||
}
|
||||
|
||||
for (int k = 0; k < j; k++) {
|
||||
l(i, j) -= l(i, k) * u(k, j);
|
||||
}
|
||||
|
||||
l(i, j) = 1 / u(j, j);
|
||||
}
|
||||
}
|
||||
|
||||
print_matrix(l);
|
||||
print_matrix(u);
|
||||
return det_tri(l) * det_tri(u);
|
||||
}
|
||||
|
||||
template<typename _Scalar, int _Rows, int _Cols>
|
||||
_Scalar det_tri(const Matrix<_Scalar, _Rows, _Cols> &m) {
|
||||
int n = std::min(m.rows(), m.cols());
|
||||
|
||||
int det = 1;
|
||||
for (int i = 0; i < n; i++) {
|
||||
det *= m(i, i);
|
||||
}
|
||||
|
||||
return det;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -41,6 +41,23 @@ namespace gti320 {
|
|||
*/
|
||||
Vector(const Vector &other) : MatrixBase<_Scalar, _Rows, 1>(other) {}
|
||||
|
||||
/**
|
||||
* Constructeur de copie avec une grandeur différente
|
||||
* @tparam _OtherRows
|
||||
* @param other
|
||||
*/
|
||||
template<int _OtherRows>
|
||||
Vector(const Vector<_Scalar, _OtherRows> &other) : MatrixBase<_Scalar, _Rows, 1>() {
|
||||
int n = std::min(other.size(), _Rows);
|
||||
const _Scalar *src = other.data();
|
||||
_Scalar *dest = this->m_storage.data();
|
||||
memcpy(dest, src, n * sizeof(_Scalar));
|
||||
|
||||
if (n < _Rows) {
|
||||
memset(&dest[n], 0, (_Rows - n) * sizeof(_Scalar));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Destructeur
|
||||
*/
|
||||
|
|
166
labo01/main.cpp
166
labo01/main.cpp
|
@ -171,64 +171,84 @@ TEST(TestLabo1, Matrix4x4SizeTest) {
|
|||
*/
|
||||
TEST(TestLabo1, MatrixMatrixOperators) {
|
||||
// Opérations arithmétiques avec matrices à taille dynamique
|
||||
{
|
||||
// Test : matrice identité
|
||||
Matrix<double> A(6, 6);
|
||||
A.setIdentity();
|
||||
EXPECT_DOUBLE_EQ(A(0, 0), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(1, 1), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(2, 2), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(3, 3), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(4, 4), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(5, 5), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(A(1, 0), 0.0);
|
||||
{
|
||||
// Test : matrice identité
|
||||
Matrix<double> A(6, 6);
|
||||
A.setIdentity();
|
||||
EXPECT_DOUBLE_EQ(A(0, 0), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(1, 1), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(2, 2), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(3, 3), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(4, 4), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(5, 5), 1.0);
|
||||
EXPECT_DOUBLE_EQ(A(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(A(1, 0), 0.0);
|
||||
|
||||
// Test : produit scalaire * matrice
|
||||
const double alpha = 2.5;
|
||||
Matrix<double> B = alpha * A;
|
||||
EXPECT_DOUBLE_EQ(B(0, 0), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(1, 1), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(2, 2), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(3, 3), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(4, 4), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(5, 5), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(B(1, 0), 0.0);
|
||||
// Test : produit scalaire * matrice
|
||||
const double alpha = 2.5;
|
||||
Matrix<double> B = alpha * A;
|
||||
EXPECT_DOUBLE_EQ(B(0, 0), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(1, 1), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(2, 2), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(3, 3), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(4, 4), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(5, 5), alpha);
|
||||
EXPECT_DOUBLE_EQ(B(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(B(1, 0), 0.0);
|
||||
|
||||
// Test : produit matrice * matrice
|
||||
Matrix<double> C = A * B;
|
||||
EXPECT_DOUBLE_EQ(C(0, 0), A(0, 0) * B(0, 0));
|
||||
EXPECT_DOUBLE_EQ(C(1, 1), A(1, 1) * B(1, 1));
|
||||
EXPECT_DOUBLE_EQ(C(2, 2), A(2, 2) * B(2, 2));
|
||||
EXPECT_DOUBLE_EQ(C(3, 3), A(3, 3) * B(3, 3));
|
||||
EXPECT_DOUBLE_EQ(C(4, 4), A(4, 4) * B(4, 4));
|
||||
EXPECT_DOUBLE_EQ(C(5, 5), A(5, 5) * B(5, 5));
|
||||
EXPECT_DOUBLE_EQ(C(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(C(2, 3), 0.0);
|
||||
// Test : produit matrice * matrice
|
||||
Matrix<double> C = A * B;
|
||||
EXPECT_DOUBLE_EQ(C(0, 0), A(0, 0) * B(0, 0));
|
||||
EXPECT_DOUBLE_EQ(C(1, 1), A(1, 1) * B(1, 1));
|
||||
EXPECT_DOUBLE_EQ(C(2, 2), A(2, 2) * B(2, 2));
|
||||
EXPECT_DOUBLE_EQ(C(3, 3), A(3, 3) * B(3, 3));
|
||||
EXPECT_DOUBLE_EQ(C(4, 4), A(4, 4) * B(4, 4));
|
||||
EXPECT_DOUBLE_EQ(C(5, 5), A(5, 5) * B(5, 5));
|
||||
EXPECT_DOUBLE_EQ(C(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(C(2, 3), 0.0);
|
||||
|
||||
// Test : addition matrice * matrice
|
||||
Matrix<double> A_plus_B = A + B;
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(0, 0), A(0, 0) + B(0, 0));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(1, 1), A(1, 1) + B(1, 1));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(2, 2), A(2, 2) + B(2, 2));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(3, 3), A(3, 3) + B(3, 3));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(4, 4), A(4, 4) + B(4, 4));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(5, 5), A(5, 5) + B(5, 5));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(2, 3), 0.0);
|
||||
}
|
||||
// Test : addition matrice + matrice
|
||||
Matrix<double> A_plus_B = A + B;
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(0, 0), A(0, 0) + B(0, 0));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(1, 1), A(1, 1) + B(1, 1));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(2, 2), A(2, 2) + B(2, 2));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(3, 3), A(3, 3) + B(3, 3));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(4, 4), A(4, 4) + B(4, 4));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(5, 5), A(5, 5) + B(5, 5));
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(0, 1), 0.0);
|
||||
EXPECT_DOUBLE_EQ(A_plus_B(2, 3), 0.0);
|
||||
}
|
||||
|
||||
// Opérations arithmétique avec matrices à stockage par lignes et par
|
||||
// colonnes.
|
||||
{
|
||||
// Création d'un matrice à stockage par lignes
|
||||
Matrix<double, Dynamic, Dynamic, RowStorage> A(5, 5);
|
||||
A(0, 0) = 0.8147; A(0, 1) = 0.0975; A(0, 2) = 0.1576; A(0, 3) = 0.1419; A(0, 4) = 0.6557;
|
||||
A(1, 0) = 0.9058; A(1, 1) = 0.2785; A(1, 2) = 0.9706; A(1, 3) = 0.4218; A(1, 4) = 0.0357;
|
||||
A(2, 0) = 0.1270; A(2, 1) = 0.5469; A(2, 2) = 0.9572; A(2, 3) = 0.9157; A(2, 4) = 0.8491;
|
||||
A(3, 0) = 0.9134; A(3, 1) = 0.9575; A(3, 2) = 0.4854; A(3, 3) = 0.7922; A(3, 4) = 0.9340;
|
||||
A(4, 0) = 0.6324; A(4, 1) = 0.9649; A(4, 2) = 0.8003; A(4, 3) = 0.9595; A(4, 4) = 0.6787;
|
||||
A(0, 0) = 0.8147;
|
||||
A(0, 1) = 0.0975;
|
||||
A(0, 2) = 0.1576;
|
||||
A(0, 3) = 0.1419;
|
||||
A(0, 4) = 0.6557;
|
||||
A(1, 0) = 0.9058;
|
||||
A(1, 1) = 0.2785;
|
||||
A(1, 2) = 0.9706;
|
||||
A(1, 3) = 0.4218;
|
||||
A(1, 4) = 0.0357;
|
||||
A(2, 0) = 0.1270;
|
||||
A(2, 1) = 0.5469;
|
||||
A(2, 2) = 0.9572;
|
||||
A(2, 3) = 0.9157;
|
||||
A(2, 4) = 0.8491;
|
||||
A(3, 0) = 0.9134;
|
||||
A(3, 1) = 0.9575;
|
||||
A(3, 2) = 0.4854;
|
||||
A(3, 3) = 0.7922;
|
||||
A(3, 4) = 0.9340;
|
||||
A(4, 0) = 0.6324;
|
||||
A(4, 1) = 0.9649;
|
||||
A(4, 2) = 0.8003;
|
||||
A(4, 3) = 0.9595;
|
||||
A(4, 4) = 0.6787;
|
||||
|
||||
// Test : transposée (le résultat est une matrice à stockage par
|
||||
// colonnes)
|
||||
|
@ -486,8 +506,6 @@ TEST(TestLabo1, Math3D) {
|
|||
EXPECT_DOUBLE_EQ(Rinv(0, 0), RT(0, 0));
|
||||
EXPECT_DOUBLE_EQ(Rinv(1, 1), RT(1, 1));
|
||||
EXPECT_DOUBLE_EQ(Rinv(0, 2), RT(0, 2));
|
||||
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -630,6 +648,52 @@ TEST(TestLabo1, Supplementaires) {
|
|||
V1 = V2;
|
||||
EXPECT_EQ(V1.size(), V2.size());
|
||||
EXPECT_EQ(V1(12), V2(12));
|
||||
|
||||
// === Copie de vecteurs de grandeur différente ===
|
||||
// Test 11: Petit vers grand
|
||||
Vector<int, 5> V3;
|
||||
for (int i = 0; i < V3.size(); i++) {
|
||||
V3(i) = i;
|
||||
}
|
||||
Vector<int, 7> V4(V3);
|
||||
|
||||
for (int i = 0; i < V3.size(); i++) {
|
||||
EXPECT_EQ(V4(i), V3(i));
|
||||
}
|
||||
for (int i = V3.size(); i < V4.size(); i++) {
|
||||
EXPECT_EQ(V4(i), 0);
|
||||
}
|
||||
|
||||
// Test 12: Grand vers petit
|
||||
Vector<int, 5> V5(V4);
|
||||
for (int i = 0; i < V5.size(); i++) {
|
||||
EXPECT_EQ(V5(i), V4(i));
|
||||
}
|
||||
|
||||
// === Déterminants ===
|
||||
Matrix<int, 1, 1> MD1x1;
|
||||
MD1x1(0, 0) = 1;
|
||||
|
||||
Matrix<int, 2, 2> MD2x2;
|
||||
MD2x2(0, 0) = 1; MD2x2(0, 1) = 2;
|
||||
MD2x2(1, 0) = 3; MD2x2(1, 1) = 4;
|
||||
|
||||
Matrix<int, 3, 3> MD3x3;
|
||||
MD3x3(0, 0) = 1; MD3x3(0, 1) = 2; MD3x3(0, 2) = 3;
|
||||
MD3x3(1, 0) = 4; MD3x3(1, 1) = 5; MD3x3(1, 2) = 6;
|
||||
MD3x3(2, 0) = 7; MD3x3(2, 1) = 9; MD3x3(2, 2) = 0;
|
||||
|
||||
// Test 13: 1x1
|
||||
int det1 = det(MD1x1);
|
||||
EXPECT_EQ(det1, MD1x1(0, 0));
|
||||
|
||||
// Test 14: 2x2
|
||||
int det2 = det(MD2x2);
|
||||
EXPECT_EQ(det2, -2);
|
||||
|
||||
// Test 15: 3x3
|
||||
int det3 = det(MD3x3);
|
||||
EXPECT_EQ(det3, 33);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
|
|
Loading…
Reference in New Issue